首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   910篇
  免费   241篇
  国内免费   171篇
测绘学   15篇
大气科学   4篇
地球物理   447篇
地质学   659篇
海洋学   51篇
天文学   5篇
综合类   77篇
自然地理   64篇
  2024年   3篇
  2023年   4篇
  2022年   16篇
  2021年   25篇
  2020年   23篇
  2019年   46篇
  2018年   30篇
  2017年   41篇
  2016年   39篇
  2015年   49篇
  2014年   65篇
  2013年   96篇
  2012年   60篇
  2011年   48篇
  2010年   50篇
  2009年   108篇
  2008年   104篇
  2007年   48篇
  2006年   40篇
  2005年   42篇
  2004年   46篇
  2003年   27篇
  2002年   44篇
  2001年   26篇
  2000年   26篇
  1999年   27篇
  1998年   16篇
  1997年   21篇
  1996年   25篇
  1995年   23篇
  1994年   17篇
  1993年   18篇
  1992年   18篇
  1991年   13篇
  1990年   10篇
  1989年   4篇
  1988年   8篇
  1987年   3篇
  1986年   8篇
  1985年   2篇
  1979年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有1322条查询结果,搜索用时 31 毫秒
1.
Dynamic mechanisms controlling the topography of Longmenshan area   总被引:1,自引:0,他引:1  
The Longmenshan fault, which defines the eastern edge of the Tibetan Plateau, is one of the steepest margins of the plateau with a sharp elevation drop of about 4 km over a distance less than 100 km across the Longmenshan fault. The mechanism which is responsible for controlling and maintaining the elevation difference is highly debated. Using multiple observations including seismic velocity model, Moho depth, effective elastic thickness of the lithosphere, we conducted a quantitative study for elucidating the contributions from crust and lithospheric mantle by an integrated analysis of lithospheric isostasy and flexure. It is shown that the topography of the Longmenshan fault is supported by both lithospheric isostasy and flexure statically, and lower crustal channel flow and mantle convection dynamically. Different mechanisms have different weights for contribution to the topography of the Songpan-Ganzi block and the Sichuan Basin. The static and dynamic support contribute roughly the same to the topographic difference of ~4 km between the two sides of the Longmenshan fault. The static topographic difference of ~2 km is mainly resulted from the lithospheric isostasy, while the dynamic one of ~2 km is contributed by the uprising of the accumulated material in the lower crust beneath the Songpan-Ganzi block and the downward drag force caused by the upper mantle convection under the Sichuan Basin. It is thus suggested that the lower crustal flow and upper mantle convection are dynamic forces which should be taken into account in the studies on the dynamics in the Longmenshan and surrounding regions.  相似文献   
2.
太行山南端浅层速度结构成像和隐伏断裂探测   总被引:1,自引:0,他引:1  
利用太行山南端的深地震反射剖面数据,运用初至波层析成像方法反演得到该区域的浅层P波速度结构和基底面展布形态,发现剖面浅部的P波速度变化与沉积盖层厚度和断裂分布有着较好的对应关系。利用跨断裂完成的浅层地震反射剖面,对区域内2条第四纪隐伏活动断裂进行高分辨率成像。结果表明,汤西断裂为东倾的正断层,控制汤阴地堑的西边界,活动年代为中更新世;汤东断裂为西倾的正断层,是汤阴地堑的主控边界断裂,活动年代为晚更新世。  相似文献   
3.
《China Geology》2020,3(2):314-338
The Yangtze River Economic Belt (YREB) spans three terrain steps in China and features diverse topography that is characterized by significant differences in geological structure and present-day crustal deformation. Active faults and seismic activity are important geological factors for the planning and development of the YREB. In this paper, the spatial distribution and activity of 165 active faults that exist along the YREB have been compiled from previous findings, using both remote-sensing data and geological survey results. The crustal stability of seven particularly noteworthy typical active fault zones and their potential effects on the crustal stability of the urban agglomerations are analyzed. The main active fault zones in the western YREB, together with the neighboring regional active faults, make up an arc fault block region comprising primarily of Sichuan-Yunnan and a “Sichuan-Yunnan arc rotational-shear active tectonic system” strong deformation region that features rotation, shear and extensional deformation. The active faults in the central-eastern YREB, with seven NE-NNE and seven NW-NWW active faults (the “7-longitudinal, 7-horizontal” pattern), macroscopically make up a “chessboard tectonic system” medium-weak deformation region in the geomechanical tectonic system. They are also the main geological constraints for the crustal stability of the YREB.  相似文献   
4.
为探究芦山M7.0级地震后5年多来,震源区龙门山断裂带西南段介质波速的变化规律,本文基于2012年4月至2018年4月共6年的连续波形数据,运用移动窗互谱与频域偏振等分析方法,结合背景噪声源的特性,对不同深度范围内的相对波速变化以及震后的恢复过程与机制进行了研究.获得的主要认识包括:(1)年尺度而言,震源区周期为1~20 s的背景噪声场相对稳定,但成分复杂、2~10 s频带内至少存在2个能量相对稳定的噪声源;不同周期噪声的能量,在月变与季节性上的变化特征差异明显.(2)获得了长时间尺度、不同频带内介质相对波速的背景变化水平,1~2 s、2~4 s的波动幅度(约为±0.04%)与季节性变化规律强于4~10 s、10~20 s的,结合与降雨量相关的地下水位模型能很好地解释其变化规律.(3)震源区的同震波速降低现象清晰,降幅约为0.08%~0.1%;空间上,波速下降最为显著的区域主要集中在龙门山断裂带两侧约70 km范围内,其中四川盆地一侧平均约为0.1%,略高于青藏高原(0.08%)一侧;在断裂带内的降速不显著.对不同子频带进行测量的结果显示,震后除10~20 s外,其余3个子频带的相对波速在震后较短时间内(约20天左右)均出现较大幅度的波速降低现象,其中4~10 s的平均降速最大(约为0.08%),分析认为主震及大量余震的松弛效应是引起介质波速下降的主要原因.(4)震后大约1年左右,波速变化基本恢复到震前水平,且至2018年4月前未观察到大幅的波速变化现象,总体上各频带内的结果均沿零线小幅波动.  相似文献   
5.
采用“三小三高二绝招”的工作方法,通过静校正、多域多方法联合噪音衰减和精细的速度分析获得较高分辨率的地震时间剖面,揭示苏码头断裂的展布位置、构造形态及变形样式等。结果表明,区域构造以冲起式为主,在反冲断层与逆冲断层之间形成冲起构造或逆冲三角构造,在地震剖面上有明显的楔状特征。通过地震测线的断层走向以NE为主,倾向以SE为主,部分断层倾向为NW。  相似文献   
6.
利用断层两盘岩溶水化学特征判断其导隔水性对于我国华北型煤田水害防治具有十分重要的实践意义。以顾北矿F104断层两侧太原组岩溶地下水为研究对象,在分析断层两盘水文地质条件基础上,采用Piper三线图、离子组合比和主成分法,分析了主要组分来源及水-岩作用差异性,并采用PHREEQC软件对岩溶地下水进行反向水化学模拟。结果表明:南北区岩溶水均存在方解石和白云石的溶解和沉淀现象,南区阳离子交换吸附和脱硫酸作用程度强于北区,而北区黄铁矿氧化和岩盐溶解作用较南区明显,南北两区水化学环境及水-岩作用存在显著差异,进而推断F104断层具有较好的阻水性,且影响了其两侧的氧化-还原环境及温度差异,控制着地下水径流方向和水-岩作用程度。   相似文献   
7.
Under the background of thrusting stress regime, a large number of strike-slip earthquakes occurred on the Miyaluo Fault during the Wenchuan earthquake sequence process, which is in the southern part of the Longmenshan Fault. In order to find the cause of their occurrence, stress tensors in subregions near the Miyaluo Fault are estimated. The result shows that in both north and south side of the Miyaluo Fault, the direction of principal compressive stress is nearly perpendicular to the Longmenshan Fault, and its dip is nearly horizontal, and the direction of tensile stress is nearly vertical. While in the Miyaluo fault zone, the direction of principal compressive stress is SWW-NEE, and its dip is nearly horizontal, the direction of principal tensile stress is NNW-SSE, also its dip is nearly horizontal. It is consistent with sinistral shear stress state in the Miyaluo fault zone. It was referred that the behavior of Miyaluo Fault during the Wenchuan earthquake sequence process was caused by tearing effect generated from unbalanced forces of two sides of the fault. To understand the rupture mode of the aftershocks in subregions as described above, the total seismic moment tensors are estimated by adding the corresponding component separately of the seismic moment tensor of aftershocks in each region. The result shows the similar trend of total seismic moment tensor components in the north and south side of the Miyaluo Fault(indicating the consistency of rupture mode in the north and south side of the Miyaluo Fault), and most seismic moment tensor components in the south side is higher than that in the north side, especially the compression component perpendicular to Longmenshan Fault and expansion component in the vertical direction. It indicates that thrusting component in the southeast direction in the south side is greater than that in the north side, and the thrusting difference causes the sinistral tearing effect of the Miyaluo Fault. We also find that the sinistral tearing component of the Miyaluo Fault is the same order of magnitude with the thrusting difference of its two sides, which indicates that the tearing effect of Miyaluo Fault can be completely explained by thrusting difference of its two sides. According to the analysis, we put forward the dynamic model of the Miyaluo Fault, which can explain the above phenomenon.  相似文献   
8.
Longmenshan fault zone is a famous orogenic belt and seismic zone in the southeastern Tibetan plateau of China. The Wenchuan MS8.0 earthquake on May 12, 2008 and the Ya'an MS7.0 earthquake on April 20, 2013 occurred in the central-southern part of Longmenshan fault zone. Because of its complex geological structures, frequent earthquakes and special geographical locations, it has attracted the attention of many scholars around the world. Satellite gravity field has advantages in studying gravity field and gravity anomaly changes before and after earthquake. It covers wide range, can be updated regularly, without difficulty in terms of geographical restrictions, and is not affected by environmental factors such as weather, terrain and traffic. Therefore, the use of high-precision Earth satellite gravity field data inversion and interpretation of seismic phenomena has become a hot topic in earth science research. In order to understand satellite gravity field characteristics of the Longmenshan earthquake zone in the southeastern Tibetan plateau and its seismogenic mechanism of earthquake disasters, the satellite gravity data was used to present the terrain information of the study area. Then, by solving the regional gravity anomaly of the Moho surface, the crustal thickness of the study area was inverted, and the GPS velocity field data was used to detect the crustal deformation rate and direction of the study area. Combining the tectonic setting of the Longmenshan fault zone and the existing deep seismic sounding results of the previous researchers, the dynamic characteristics of the gravity time-varying field after the earthquake in the Longmenshan earthquake zone was analyzed and the mechanism of the earthquake was explored. The results show that the eastward flow of deep materials in the eastern Tibetan plateau is strongly blocked at the Longmenshan fault zone. The continuous collision and extrusion process result in a "deep drop zone" in the Moho surface, and the long-term stress effect is conducive to the formation of thrust-nappe and strike-slip structures. The Longmenshan earthquake zone was in the large-scale gradient zone of gravity change before the earthquake, the deep plastic fluid material transport velocity differed greatly, the fluid pressure was enhanced, and the rock mechanical strength in the seismic source region was weakened, which contributed to the intrusion of crustal fluid and the upwelling of the asthenosphere. As a result, the continuous accumulation of material and energy eventually led to continuous stress imbalance in the deep part and shear rupture of the deep weak structure, causing the occurrence of the thrust-nappe and strike-slip earthquake.  相似文献   
9.
Many synthetic model studies suggested that the best way to obtain good 3D interpretation results is to distribute the MT sites at a 2D grid array with regular site spacing over the target area. However, MT 3D inversion was very difficult about 10 years ago. A lot of MT data were collected along one profile and then interpreted with 2D inversion. How to apply the state-of-the-art 3D inversion technique to interpret the accumulated mass MT profiles data is an important topic. Some studies on 3D inversion of measured MT profile data suggested that 2D inversions usually had higher resolution for the subsurface than 3D inversions. Meanwhile, they often made their interpretation based on 2D inversion results, and 3D inversion results were only used to evaluate whether the overall resistivity structures were correct. Some researchers thought that 3D inversions could not resolute the local structure well, while 2D inversion results could agree with the surface geologic features much well and interpret the geologic structures easily. But in the present paper, we find that the result of 3D inversion is better than that of 2D inversion in identifying the location of the two local faults, the Shade Fault(SDF)and the Yunongxi Fault(YNXF), and the deep structures. In this paper, we first studied the electrical structure of SDF and YNXF based on a measured magnetotelluric(MT) profile data. Besides, from the point of identifying active faults, we compared the capacity of identifying deep existing faults between 2D inversion models and 3D models with different inversion parameters. The results show that both 2D and 3D inversion of the single-profile data could obtain reasonable and reliable electrical structures on a regional scale. Combining 2D and 3D models, and according to our present data, we find that both SDF and YNXF probably have cut completely the high resistivity layer in the upper crust and extended to the high conductivity layer in the middle crust. In terms of the deep geometry of the faults, at the profile's location, the SDF dips nearly vertically or dips southeast with high dip angle, and the YNXF dips southeast at depth. In addition, according to the results from our measured MT profile, we find that the 3D inversion of single-profile MT data has the capacity of identifying the location and deep geometry of local faults under present computing ability. Finally, this research suggests that appropriate cell size and reasonable smoothing parameters are important factors for the 3D inversion of single-profile MT data, more specifically, too coarse meshes or too large smoothing parameters on horizontal direction of 3D inversion may result in low resolution of 3D inversions that cannot identify the structure of faults. While, for vertical mesh size and data error thresholds, they have limited effect on identifying shallow tectonics as long as their changes are within a reasonable range. 3D inversion results also indicate that, to some extent, adding tippers to the 3D inversion of a MT profile can improve the model's constraint on the deep geometry of the outcropped faults.  相似文献   
10.
陈应君 《中国地震》2019,35(2):305-318
利用哈佛大学GCMT数据中心和前人积累的历史地震资料(1962~2016年MW 4.0地震)以及Crust2.0地壳结构统计分析了喜马拉雅地区、天山地区的地壳区域构造与地震活动间的相关性。此外,利用GFZ地学研究中心提供的静态卫星重力模型GGM03S/EGM2008和地形模型Topo计算了2个地区的各类重力异常场,同时还模拟了不同地壳弹性参数下的重力异常场,结果表明喜马拉雅地区重力异常场在水平、垂直方向的梯度特征远大于天山地区的异常特征,且喜马拉雅地区的有效弹性板厚度T_e(6~15km)小于天山地区的有效弹性板厚度T_e(20~30km)。最后,利用喜马拉雅地区与天山地区的GPS震间三维形变场约束了断层运动模型,结果显示两者主前缘断裂的断层闭锁深度及应力积累状态存在较大的差异。因此认为,造成青藏高原及邻区的边界地壳区域地震活动性差异的动力学因素,与地壳有效弹性板厚度、孕震断层参数及区域应力积累状态等密切相关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号